Loglinear Residual Tests of Moran’ I Autocorrelation: An Application to Kentucky Breast Cancer Data
نویسندگان
چکیده
Spatial regressions have been widely used, but their use with the permutation tests of residuals either in linear or loglinear models is rarely seen. In the present study, we have linked the Cliff-Ord permutation test of Moran’s I on linear regression errors to loglinear regression residuals under asymptotic normality. We devised both Pearson residual Moran’s IP R and deviance residual Moran’s IDR tests and applied them to a set of log-rate models for early stage and late-stage breast cancer together with socioeconomic and access-to-care data in Kentucky. The results showed that socioeconomic and access-to-care variables were sufficient to account for spatial clustering of early stage breast carcinomas with breast cancer screening and number of primary care providers being more persistent than county median family income. For late-stage carcinomas, in contrast, the late-stage incidence rate was negatively associated with breast cancer screening level. This result confirmed our expectation: a high screening level is associated with high incidence rate of early stage disease, which in turn reduces late-stage incidence rates. In addition, we located four late-stage breast cancer clusters that cannot be explained by socioeconomic and access-to-care variables.
منابع مشابه
Loglinear Residual Tests of Moran’s I Autocorrelation and their Applications to Kentucky Breast Cancer Data
This article bridges the permutation test of Moran’s I to the residuals of a loglinear model under the asymptotic normality assumption. It provides the versions of Moran’s I based on Pearson residuals (IPR) and deviance residuals (IDR) so that they can be used to test for spatial clustering while at the same time account for potential covariates and heterogeneous population sizes. Our simulatio...
متن کاملInvestigation of Sea Surface Temperature (SST) and its spatial changes in Gulf of Oman for the period of 2003 to 2015
Considering the great application of Sea Surface Temperature (SST) in climatic and oceanic investigations, this research deals with the investigation of spatial autocorrelation pattern of SST data obtained from AVHRR sensor for Gulf of Oman from 2003 to 2015 (13 years). To achieve this aim, two important spatial statistics, i.e. global Moran and Anselin local Moran’s I were employed within mont...
متن کاملControl chart based on residues: Is a good methodology to detect outliers?
The purpose of this article is to evaluate the application of forecasting models along with the use of residual control charts to assess production processes whose samples have autocorrelation characteristics. The main objective is to determine the efficiency of control charts for individual observations (CCIO) and exponentially weighted moving average (EWMA) charts when they are applied to res...
متن کاملInvestigation of Long Term Trend of Spatio-Temporal changes of Sea Surface Temperature in Oman Sea
Considering the vast application of sea surface temperature in climatic and oceanic investigations, this parameter was studied in Oman Sea from 1986 to 2015. The SST was surveyed using trend analysis and Global and local Moran’s I spatial autocorrelation. In trend analysis, the Mann-Kendall test was used to determine the trend of SST changes and the Sen's Estimator method was used to examine th...
متن کاملمدلسازی مکانی ـ زمانی سهبعدی پراکنش آلایندهی اکسید های ازت هوا ناشی از ترافیک در تقاطع خیابان ولیعصر ـ فاطمی شهر تهران
Air pollution has become one of the main problems of cities. Among the sources of air pollution, vehicular traffic plays an important role. Planning for efficient management and control of the air pollution caused by vehicular traffic requires accurate information on spatio-temporal dispersion of the pollutions. This research studies 3D spatio-temporal dispersion of NOx pollution caused by vehi...
متن کامل